Sentence congruency constraints on letter identification

Clare Lally & Kathy Rastle

BACKGROUND

How do readers identify letters in words?

PETAL \[\text{petal} \rightarrow \text{petal}\]

Require **flexibility** to overcome feature variation across case, font etc., whilst maintaining **specificity** to avoid identification errors with letters with similar feature combinations.

- **Word Superiority Effect**
 - Reicher (1967)
 - [bloom > blorm]

Readers are more accurate at identifying letters in words compared to non-words.

- **Sentence Superiority Effect**
 - Snell & Grainger (2017)
 - [the cow jumped over the moon] [the cow jumped the ________]

Readers are also more accurate at identifying words in sentence compared to a jumbled word combination.

Research aim: to investigate whether readers integrate higher-level sentence cues during letter identification, and whether cues are hierarchically integrated based on available context.

SINGLE WORD CUES

<table>
<thead>
<tr>
<th>Condition</th>
<th>Target</th>
<th>Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Word</td>
<td>plate</td>
<td>plite</td>
<td>plite</td>
</tr>
<tr>
<td>Pseudo-Word</td>
<td>plave</td>
<td>plave</td>
<td>plave</td>
</tr>
</tbody>
</table>

Target exposure duration was thresholded to each participant using a preliminary task.

Prediction: letter identification will be more accurate in semantically congruent targets compared to incongruent targets.

ONLINE SENTENCE CLOZE TASK (PREDICTABLE)

42 participants predicted the final word of 90 predictable sentence frames.

- The calm pilot landed the faulty ________ .

Sentence frames had an average cloze probability of 76%. The congruent target was the most frequent response in 82% of sentence frames. The incongruent target was never predicted.

PREDICTABLE SENTENCE CUES

<table>
<thead>
<tr>
<th>Condition</th>
<th>Predictable Sentence frame</th>
<th>Target</th>
<th>Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congruent</td>
<td>the calm pilot landed the faulty plane</td>
<td>plite</td>
<td>plite</td>
<td></td>
</tr>
<tr>
<td>Incongruent</td>
<td>the calm pilot landed the faulty plate</td>
<td>plite</td>
<td>plite</td>
<td></td>
</tr>
<tr>
<td>Pseudo-Word</td>
<td>the calm pilot landed the faulty plave</td>
<td>plave</td>
<td>plave</td>
<td></td>
</tr>
</tbody>
</table>

Feedback

Sentence level semantic cues constrain letter identification, eliminating the word superiority effect for incongruent words.

WITH FEEDBACK

DISRUPTED WORD ORDER

Sentence level semantic cues constrain letter identification – even when feedback suggests these cues are unreliable.

Sentence level semantic cues constrain letter identification – even when sentence word order is disrupted.
Sentence congruency constraints on letter identification

(continued)

Unpredictable targets
We re-assigned predictable sentence frames to different targets so that both word targets were unlikely.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Predictable Sentence frame</th>
<th>Target Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Incongruent 1</td>
<td>the dog ran from the venomous</td>
<td>plane</td>
<td>plate</td>
</tr>
<tr>
<td>Incongruent 2</td>
<td></td>
<td>plate</td>
<td>plane</td>
</tr>
<tr>
<td>Pseudo-Word</td>
<td></td>
<td>plave</td>
<td>plave</td>
</tr>
</tbody>
</table>

RSVP Reicher-Wheeler paradigm (as used in previous tasks).

Prediction: the reader will revert to prioritising lexical cues when a congruent candidate is unavailable (word superiority effect).

The word superiority effect is **eradicated** when neither of the word targets fit the sentence context.

Predictable targets
We used neutral sentence frames so that both word targets were likely.

<table>
<thead>
<tr>
<th>Condition</th>
<th>Neutral Sentence frame</th>
<th>Target Present</th>
<th>Absent</th>
</tr>
</thead>
<tbody>
<tr>
<td>Congruent 1</td>
<td>The boy admired the smooth white</td>
<td>plane</td>
<td>plate</td>
</tr>
<tr>
<td>Congruent 2</td>
<td></td>
<td>plate</td>
<td>plane</td>
</tr>
<tr>
<td>Pseudo-Word</td>
<td></td>
<td>plave</td>
<td>plave</td>
</tr>
</tbody>
</table>

RSVP Reicher-Wheeler paradigm (as used in previous tasks).

Prediction: the reader will revert to prioritising lexical cues when a congruent candidate is unavailable (word superiority effect).

The word superiority effect is **restored** when both word targets fit the sentence context.

ONLINE SENTENCE CLOZE TASK (NEUTRAL)

42 participants predicted the final word of 90 neutral sentence frames.

The boy admired the smooth white _______.

Sentence frames had an average cloze probability of **12%**. Target 1 (previously congruent) was the most frequent response in **0.3%** of sentence frames. Target 2 (previously incongruent) was the most frequent response in **0.4%** of sentence frames.

CONCLUSIONS

Higher level sentence cues inform letter identification, and priority assigned to cues is modulated by orthographic context.

REFERENCES

CONTACT

Clare.Lally.2017@live.rhul.ac.uk
@Clare_Lally